Franz Cell Barrier Integrity Assessment using a Condenser-Chamber TEWL Instrument

Bob Imhof, Perry Xiao, Elliott Berg & Lori Ciortea

Photophysics Research Centre, London South Bank University & Biox Systems Ltd

Barrier Integrity Assessment

Barrier integrity assessment is an integral part of experimental protocols for in-vitro dermal absorption measurements.

Aims:-

1. Assess performance of condenser-chamber instrument:-

Artificial membranes

Snake skin sheddings

2. Develop data analysis method:-

From flux to membrane resistance

- 1. Apparatus
- 2. Artificial membrane measurements
- 3. Artificial membrane analysis
- 4. Snake skin measurements
- 5. Snake skin analysis
- 6. Acknowledgements

Apparatus 1

Biox AquaFlux Condenser-chamber TEWL Method

Closed-Chamber

Shields from ambient air movements.

Condenser

Removes water vapour. Controls the microclimate.

Single RHT Sensor

Improves accuracy & sensitivity.

Apparatus 2

PermeGear Static Franz Cell

Apparatus 3

AquaFlux - Franz Cell Coupling

- 1. Apparatus
- 2. Artificial membrane measurements
- 3. Artificial membrane analysis
- 4. Snake skin measurements
- 5. Snake skin analysis
- 6. Acknowledgements

Artificial Membrane Measurements

Vapour Flux Transmission through Sil-Tec Membranes

Comments:-

1. Leak-free coupling to membrane & TEWL instrument is essential.

2. Air-side must be dry for flux to indicate membrane resistance.

3. Flux settling time prolonged by air-side moisture. (eg red 0.13mm curve)

4. Flux curve shape indicates air-side leaks. (eg turquoise 0.24mm curve)

- 1. Apparatus
- 2. Artificial membrane measurements
- 3. Artificial membrane analysis
- 4. Snake skin measurements
- 5. Snake skin analysis
- 6. Acknowledgements

Artificial Membrane Analysis 1

Electrical Analogy - Diffusion Resistance

NB: Sil-Tec is hydrophobic & water diffuses through it as vapour. Therefore, use a 100% RH boundary condition at the water/Sil-Tec interface.

Artificial Membrane Analysis 2

Diffusion Resistance Analysis

Artificial Membrane Analysis 3 Conclusions

- 1. Leak-free couplings to membrane & TEWL instrument are essential.
- 2. Air-side must be dry for flux to indicate membrane resistance.
- 3. Flux curve shape indicates air-side leaks.
- 4. Flux settling time prolonged by air-side moisture.
- 5. Measurements verified by **Thickness** vs **Resistance** proportionality.

- 1. Apparatus
- 2. Artificial membrane measurements
- 3. Artificial membrane analysis
- 4. Snake skin measurements
- 5. Snake skin analysis
- 6. Acknowledgements

Typical Snake Skin

Samples taken from:-

Snakes 6 & 11: Bothrops atrox (F); Snake 8: Bothrops moojeni (M)

Use samples from:-

- 1. Near head
- 2. Centre body
- 3. Near Tail

Typical Samples

1. The outer surface is is scaly & hydrophobic.

Therefore mount with this surface facing the AquaFlux.

2. The inner surface is hydrophilic.

Therefore mount with this surface in contact with the water.

Centre Body Samples

Pinholes can be identified from elevated TEWL. Flux curve shape can be used to detect fault conditions **Large Pinholes**

Small Pinholes

Intact

Sample Consistency

Sample	Quantity	Tail	Middle	Head	All Parts
Snake 6	<j> [gm⁻²h⁻¹]</j>	29.9	30.2	37.7	32.0
Bothrops atrox	CV (N)	19% (6)	13%(7)	7.7% (4)	16% (17)
Snake 8	<j>[gm⁻²h⁻¹]</j>	23.5	20.3	20.7	21.5
Bothrops moojeni	CV (N)	18% (5)	7.4% (6)	18% (4)	15% (15)
Snake 11	<j>[gm⁻²h⁻¹]</j>	34.0	32.1	26.9	30.2
Bothrops atrox	CV (N)	9.7% (5)	26% (5)	14% (7)	20% (17)
All three	<j>[gm⁻²h⁻¹]</j>	29.2	27.4	28.1	28.2
	CV (N)	21% (16)	25% (18)	26% (15)	23% (49)

<J> = Mean TEWL

CV = Coefficient of Variation

(N) = Number of Samples Measured

Species Analysis

ANOVA test gives $p = 7.6 \times 10^{-8}$, ie the means are significantly different.

- 1. Apparatus
- 2. Artificial membrane measurements
- 3. Artificial membrane analysis
- 4. Snake skin measurements
- 5. Snake skin analysis
- 6. Acknowledgements

Snake Skin Analysis 1

Electrical Analogy with Surface Evaporation

NB: Snake skin is permeated with water. Evaporation on the air-side is characterised by a sorption isotherm. Use human SC isotherm (right) for rough initial analysis.

Sorption Isotherm for Human SC [1]

Snake Skin Analysis 2

Relationship between TEWL & Membrane Resistance

High membrane resistance is independent of temperature because the flux is controlled by the membrane.

Snake Skin Analysis 3

Conclusions

- 1. TEWL variability is typically ~25% CV.
- 2. Pinholes can be identified from elevated TEWL.
- 3. Flux curve shape can be used to detect fault conditions.
- 4. TEWL characterisation with leak-free coupling is reliable.
- 5. High membrane resistance is independent of temperature.
- 6. Low membrane resistance depends on temperature.
- 7. Snake skin sheddings have potential as bio-membranes in transdermal diffusion measurements.

- 1. Apparatus
- 2. Artificial membrane measurements
- 3. Artificial membrane analysis
- 4. Snake skin measurements
- 5. Snake skin analysis
- 6. Acknowledgements

Acknowledgements

Rainer Voegeli (Pentapharm) Supply of snake sheddings & scientific input.

Gary Grove - (Cyberderm) Advice on how to handle snake sheddings. (Including what they smell like when they're off!)