

EPSILON™ SKIN HYDRATION MEASUREMENT: THE POWER OF THE ε-FILTER

Dr. Lori Ciortea, Biox Systems Ltd

What is Epsilon?

BIOX SCIENCE OF PRECISION

The Epsilon - an instrument for mapping near-surface dielectric permittivity of materials in contact with its sensing surface.

- Semiconductor fingerprint array sensor.
- 256 x 300 array of 76800 individual capacitance sensors.
- Capacitance depends on the Dielectric Permittivity ε.
- Epsilon is the name of the instrument, because it measures \mathcal{E} .
- Provides both image and hydration data simultaneously.
- Suitable for both in vivo + in vitro measurements.
- Pixel spacing is 50 μ m, sensing depth ~5 μ m.

Material	3
Air	1.0
Petroleum Jelly	2.1
Ethyl Acetate	6.0
Ethylene Dichlorate	10.4
Isopropyl Alcohol	17.9
Ethanol	24.5
Propylene Glycol	30.0
Nitrobenzene	34.8
Ethylene Glycol	37.0
DMSO	46.7
Glycerol	47.0
Water	80.1

What is Contact Imaging?

Capacitance and Dielectric Permittivity

The Epsilon uses Capacitance Sensors that respond to the material they touch. Capacitance is proportional to Dielectric Permittivity *E*.

Capacitance is a <u>device</u> property.

ɛ is a <u>material</u> property.

The Epsilon is calibrated using *E* for **Air & Water**.

BioX The Epsilon – Main Characteristic SCIENCE OF PRECISION – Main Characteristic

This linearisation & calibration is unique to the Epsilon. It enables the Epsilon to **measure** as well as **visualise**.

The Epsilon – Hardware

Hand-held Probe & Parking Base

Spring-loaded sensor for consistent contact force. USB connection for signal & power.

Parking base to protect the sensor.

In-vitro Stand.

The Epsilon – Software

Overview - Image display - Live Streaming

Hydrat	ion scale:		
Wet	(High <i>E</i>)	=	Light Colour
Dry	(Low <i>E</i>)	=	Dark Colour

- Live streaming for instant preview.
- Whole image & Region of Interest (RoI) readout.
- Live Mean *ɛ* and Histogram displays.
- Numerical readouts of Mean *ɛ* & StDev.

The Epsilon – Software

ε-Filtering for Hydration Measurement

*E***-Filtering:**

- Remove low *ɛ* pixels to correct for bad contact, lines & wrinkles.
- Remove high *ɛ* pixels to correct for surface water from topical products & insensible perspiration.
- Filtered pixels are shown in grey.
- User control of filter settings.

The Epsilon – Software

Video Analysis: ε-Filtering with Hydration or Area Dynamics

- Burst & Video Analysis.
- Time dependence of $\boldsymbol{\varepsilon}$ or Area.
- *E* -filtering to eliminate artefacts.
- Whole image & RoI.

Using *E* -filtering for removing artefacts

In each case, *E*-filtering can be used to remove artefacts of bad contact, lines, wrinkles, surface water, etc.

Removing non-SC pixels gives more accurate SC hydration measurements.

SCIENCE OF PRECISION

Hydration Measurement of Curved Surface

This is an image of a thumb joint. It has areas of:

- Bad contact (black) around the edges, lines, wrinkles & hair.
- Surface water (white) from insensible perspiration.

ɛ **-Filtering**

- Remove low-*ɛ* (black) pixels = bad contact.
- Remove high-*E* (white) pixels = surface water.
- You get a more realistic measure of mean hydration.

SCIENCE OF PRECISION

Hydration Measurement of Scalp without Shaving

These are two images of hairy scalp. Note that the brightness & contrast are enhanced. It has areas of:

- No contact (dark red) in many places.
- Hair Contact (fine red lines).
- Scalp Contact (bright areas).

ɛ **-Filtering**

- Remove low-*ɛ* (No contact & hair).
- There is no surface water in these cases.
- What remains is scalp. Despite the poor contact, plenty of scalp pixels remain for measuring mean hydration.

SCIENCE OF PRECISION

Correction for Skin/Sensor Contact

Female ventral forearm image.
Bad skin/sensor contact is black.
Bad contact (air & hair) has low *ɛ*.
Histogram peaks at low *ɛ*.

Software filter removes low $\boldsymbol{\varepsilon}$ pixels. Mean hydration increases from $\boldsymbol{\varepsilon} = 3.91$ to $\boldsymbol{\varepsilon} = 6.03$.

RoI: from ϵ = 4.92 to ϵ = 7.15.

*ɛ***-Filtering:** Corrects for bad contact (low *ɛ*) and surface water (high *ɛ*) under user control.

SCIENCE OF PRECISION

Correction for Skin Surface Water

Non-contact (low ϵ) removed by ϵ -filtering. But bright spots (insensible perspiration) remain.

Surface water ($\boldsymbol{\varepsilon} > 60$) removed by $\boldsymbol{\varepsilon}$ -filtering. RoI hydration changes from $\boldsymbol{\varepsilon} = 17.44$ to $\boldsymbol{\varepsilon} = 10$. Whole image hydration changes from $\boldsymbol{\varepsilon} = 12.70$ to $\boldsymbol{\varepsilon} = 9.39$.

E-Filtering: Removing non-SC pixels gives more accurate SC hydration measurements.

Conclusions

The power of the ε-Filter

The *E*-Filter is an analysis tool for selecting pixels within a range of $\boldsymbol{\varepsilon}$ values between and including $\boldsymbol{\varepsilon}_{\min}$ and $\boldsymbol{\varepsilon}_{\max}$.

ε-Filtering can be used to remove artefacts of bad contact, lines, wrinkles, surface water, etc.

After **filtering**, <ε> readout of the selected pixels will better represent the permittivity (hydration) of the sample material.

*E***-Filtering:** Corrects for bad contact (low $\boldsymbol{\varepsilon}$) and surface water (high $\boldsymbol{\varepsilon}$) under user control.

Thank you!

Contact: Lori@BioxSystems.com

